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Abstract 
The case of a crystal containing a thin buried layer is 
analysed within the dynamical theory of X-ray diffrac- 
tion. In this case, the upper thin part of the crystal, above 
the buffed layer, is only shifted with respect to the lower 
bulk part. The main feature is the phase shift q9 for the 
structure factors between the upper thin part and the 
lower bulk part. Owing to this phase shift, the backward 
wavefield, the wavefield with the energy flux directed out 
of the crystal, is excited in the thin part of the crystal. It is 
found that only the backward wavefield may be excited 
within the Bragg total reflection. This gives rise to 
anomalous transmission of the X-rays in the crystal. 
When the crystal is tilted across the Bragg angle, the 
variation of the intensity of X-rays in the buried layer due 
to the transmission term may be stronger than the one 
due to the anomalous absorption. Thus, this phenomenon 
should be taken into account in X-ray standing-wave 
(XSW) analysis. The excitation of the backward wave- 
field is also responsible for the appearance of oscillations 
in the reflectivity profile. The oscillation period is 
determined by the thickness of the upper thin part. The 
position and the amplitude of the oscillation directly 
provide the value of the phase qg. It is thus interesting to 
simultaneously record the X-ray reflectivity and the XSW 
measurements when studying the buried layer. 

I. Introduction 
Since the first works of Batterman (1964, 1969), the 
technique of X-ray standing waves (XSW) has been 
widely used for atom location either in the crystal bulk 
matrix or on the crystal surface [see, for example, the 
review by Zegenhagen (1993)]. Concerning the atom 
location in the crystal matrix, the problem of impurities 
in almost perfect crystals was extensively studied 
(Golovchenko, Batterman & Brown, 1974; Andersen, 
Golovchenko & Mair 1976; Materlik & Zegenhagen, 
1984; Hertel, Materlik & Zegenhagen, 1985). For the last 
case, the influence of the disturbed surface layer on the 
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XSW was also analysed by several authors (Kruglov, 
Shchemelev & Kareva, 1978; Kohn & Kovalchuk, 1981). 
A general case of a strained epilayer was treated by 
Authier, Gronkowski & Malgrange (1989) in solving 
numerically the Takagi-Taupin equations. Recently, the 
XSW technique has also been applied to the study of 
ultrathin buried layers, such as a single quantum well 
(Giannini et al., 1993; Takahasi et al., 1995; Woicik et 
al., 1995; Boulliard et al., 1997). The case of crystals 
containing an ultrathin buried layer can be considered as 
a particular case of an epitaxic system: the epilayer, i.e. 
the upper thin part of the crystal above the buried layer, 
has the same structure as the bulk and only the buried 
layer is strained. In this paper, the X-ray dynamical 
theory is developed for this case. Aspects on the XSW 
and X-ray reflectivity will be analysed and the connection 
between the XSW and X-ray reflectivity measurements 
discussed. 

High-resolution X-ray reflectivity is commonly used 
for analysing epitaxic thin films. For a buried layer, the 
reflectivity profiles also provide characteristics of both 
the upper thin part of the crystal and the buried layer. 

The presence of the upper thin part of the crystal 
strongly influences the X-ray propagation, as will be 
explained in this paper. It is worth pointing out the 
similarities and differences between an epitaxic thin film 
and a buried layer. Whenever the thin-film Bragg angle is 
very different from that of the substrate, the reflectivity 
allows one to determine the film lattice parameter from 
the film peak position and the film thickness from the 
weak oscillation period. When the Bragg angles of the 
film and the substrate are close, strong interactions occur 
between the X-rays in the film and in the substrate. Thus, 
a dynamical analysis is necessary. In the case of a 
strained thin film, the Takagi-Taupin equations should be 
numerically solved to understand the X-ray propagation 
and to extract the strain parameters (Gronkowski, 1991; 
Bensoussan, Malgrange & Sauvage-Simkin, 1987; Van- 
denberg, Hamm & Chu, 1994). In the present study, the 
two parts of the crystal, above and below the buried layer, 
have the same structure. Strong dynamical effects occur 
in the diffraction process. One cannot separate in the 
Bragg reflection the contributions from the thin part and 
the bulk. This phenomenon is detailed below. 
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In this paper, we will firstly recall features of the X-ray 
dynamical theory in the Bragg case necessary for the 
present study (§2). The analytical solutions of X-ray 
waves will be given for crystals containing an ultrathin 
buried layer (§3). Main characteristics in the X-ray 
propagation, i.e. excitation of the backward wavefield 
(§4.1) and penetration of the X-rays into the crystal 
(§4.2), will be discussed. Direct consequences of the 
analysis of the XSW and X-ray reflectivity measurements 
will be pointed out (§~.3, 4.4, 4.5). 

sin 20[A0 - AOo] 
11 = ( X h X h ) l / 2 ( l Y h l / Y o ) l / 2  , (4) 

where A0 is the departure from the exact Bragg 
angle 08 for the incident wave and A0 o = 
-Xo(1--  Vh/Vo)/2 sin 20. The Bragg total reflection 
range in the case of a non-absorbing crystal corresponds 
to 1,71 _< 1. 

The amplitude ratio ~ of each wavefield, correponding 
to each solution of (3), is given by 

2. X-ray dynamical theory 
In this paper, only cr polarization will be considered. The 
notation and convention used follow Authier (1961, 
1986), except for the reflection vector h (Fig. 1). After 
Authier's notation, the unit vector n, normal to the crystal 
surface, points into the crystal. K(o ~) and K~ '~) represent the 
incident and reflected wave vectors in vacuum respec- 
tively, while K o and K u are the incident and reflected 
wave vectors in the crystal, respectively. Yo = cos(n, Ko) 
with (n, Ko) the angle between n and Ko, while 
Yh = cos(n, Kh) with (n, Kh) the angle between n and 
K u. In the present notation, Yo is positive and Fh negative. 
For the purpose of XSW, it is convenient to point the 
vector h out of the crystal, h is thus defined as 
K h = Ko + h, with the opposite sign with respect to 
Authier's notation. 

In the two-wave approximation, X-ray wavefields in a 
perfect crystal, i.e. the dielectric displacement D(r), can 
be written as Bloch waves: 

D(r) = D o exp(-i27rK o • r) + D h exp[-i27r(K o + h).  r] 

= D O exp(-i27rK o • r)[1 + ~ exp (-i2Jrh • r)], (1) 

where ~ is the complex amplitude ratio D h / D  o. The 
wavefields are solutions of 

= --[(XhXh)l/2/Xh](yo/IYnl)l/2[rl 4- (r/2 - 1)1/2] .  (5) 

Let us call 'the forward wavefield' the one that 
propagates in a thick crystal because the energy flux 
associated is directed into the crystal. We will call 'the 
backward wavefield' the second wavefield because the 
energy flux is directed out of the crystal. To distinguish 
which solution for equations (3) and (5) corresponds to 
the forward wavefield, we will analyse the possible 
choice for the signs. Outside the Bragg reflection 
(Irll > 1), ~ for the forward wavefield should decrease 
for increasing 17. Thus, in equations (3) and (5), one must 
choose the + sign for Or < --1 and the - sign for 
r/y > -t-1, where r/y is the real part of r/. Within the Bragg 
total reflection range ([771 _< 1), only the evanescent wave 
exists in a thick crystal. The imaginary part of the wave 
vector [equation (3)] of the forward wavefield must be 
negative. 

For the sake of simplicity, let us define a sign function 
e(r/) so that [ r / + e ( 0 ) ( 0 2 -  1) 1/2] corresponds to the 
solution for the forward wavefield. It means that 

-sign(Or) for 101 > 1 
e(o) = sign{Im[(o 2 -  1)~/2/A]} for 101 _< 1, 

where lm[x] is the imaginary part of x. Thus, we denote 
(+) all the components of the forward wavefield, namely 

[K 2 - k2(1 + Xo)lDo - k 2XfiDh : 0 
(2) 

k 2 X h D o  - [ K  2 - k2(1 + Xo)]Dh = 0. 

Here k is the magnitude of the incident wave vector K (') A -  O 

in vacuum. Xo, Xh and Xh are the o, h and - h  Fourier 
components of the dielectric susceptibility, respectively. 
They are proportional to the structure factors F o, F h and 
Fh, respectively. The continuity of the tangential 
component of the wave vectors along the crystal surface 
provides two solutions: 

K o = K~o ") + ( k X o / 2 V o ) n -  (1/2A)[r/4- (q2 _ 1)1/2]n. 

(3) 

The second term describes the refraction effect. The 
linear absorption is contained in the imaginary part of 
kXo/2Vo. A = (VolVhl)l/2 /[k(XhXi,) 1/2] is the extinction 
distance. The deviation parameter 7/ is defined by 

k" (a) lk" (a) 

Thin part ~ ~  t 

. . . .  Boundary (z=O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Bulk part ~ ÷ )  K~, 
z 

Fig. 1. Notation and convention used. The unit vector n is normal to the 
crystal surface and the oz  axis points into the crystal. The reflecting 
vector h points out of  the crystal. The thin buried layer in the crystal 
is assimilated with a boundary at a depth z = t for the X-ray 
propagation. K~ ) and K~h a) represent, respectively, the incident and 
reflected wave vectors in vacuum. --oI(t~ and K~ -~ represent, 
respectively, the incident and reflected wave vectors in the bulk part 
of  the crystal. Additional wave vectors in the thin part of  the crystal 
K¢o -~ and K~ -~ represent, respectively, the incident and reflected wave 
vectors of  the backward wavefield ( o f  §2). 
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the incident wave vector as K(o +) and the amplitude ratio 
as ~(+): 

K(o +) = K(o ~) + ( k X o / 2 y o ) n  - (1/2A)[q + e(q 2 - 1)1/2]n 

(6) 
and 

~(+) = --[(XhXh)l/2 / X6](yo/]Yh])l/2[rl + ~(r/2 --  1)1/2]. 

(7) 

The backward wavefield corresponds to K(o -I and ~(-), 
obtained by replacing e by -e .  The energy flux of the 
backward wavefield is directed out of the crystal in the 
range outside the Bragg total reflection. The amplitude of 
the backward wavefield increases exponentially with the 
depth within the Bragg total reflection range. 

One important feature of a wavefield is the positions of 
the XSW antinodes. The antinode positions are deter- 
mined by the phase of the reflected wave with respect to 
the incident one. For the present case, the phases of the 
XSW associated with both wavefields are equal to the 
phases of ~+) and ~(-), respectively. Since the structure 
factor is generally complex in absorbing crystals, a 
physical insight of the phase variation can be obtained 
with the non-absorbing case. When taking the origin of 
the reflecting planes at the maximum of the electronic 
density in the non-absorbing case, the structure factor F h 
is real and its phase is equal to zero. Thus, from (7) and 
for the Bragg total reflection range (1171 < 1), the phase 
of ~(+) can be written as 

qJ = phase of [7/+ E ( q  2 - -  1) 1/2] 

= phase of [r/+ i(1 - r/2) 1/2] 

= arccos(r/). (8) 

The phase of ~(-) is simply equal to -qJ. When r/varies 
from - 1  to 1, qJ drops from Jr to 0. It means that, when 
the crystal is tilted across the Bragg reflection by 
increasing angles, the XSW antinodes of the forward 
wavefield move inwards from between the reflecting 
planes to the reflecting planes, as occurs in a thick crystal 
(Bedzyk & Materlik, 1985; Authier, 1986). For the 
backward wavefield, the XSW antinodes move outwards 
from between the reflecting planes to the reflecting 
planes. 

A general solution of the set of equations (2) is given 
by the sum of the forward and backward wavefields. 

3. Solution in the case of  a crystal containing a thin 
buried layer 

We assume that the buried layer induces only a 
displacement of the atoms and thus a phase shift for 
the structure factors. It means that it only induces a 
supplementary phase shift q) between the reflected and 
incident waves. This is typically the model for a stacking 
fault. It can be extended to the case of a thin buried layer 

where the change in the amplitudes of the waves can be 
neglected. Thus, the buried layer is simply assimilated to 
a boundary for the X-ray propagation. One may write 
q9 = 2zrh. Ar, where Ar  is the displacement due to the 
buried layer. Taking the bulk as the reference, the 
changes for the components in the thin part should be 
made: 

gh ~ gh exp(@), Xh --~ Xfi exp(--i~0) 

and from (5): 
s e --+ ~ exp(iq)). 

The waves in the vacuum D(")(r), in the upper thin part 
D(')(r) and in the bulk D(b)(r) may be expressed as: 

forz  < 0: 

O(")(r) O(o ") ~ ,~.(~) = exp[-izrrn, o • r] 

+ D~ a) exp[-/2zr(Kto a) + h).  r] 

for0  < z < t :  

D(')(r) = Dto +) exp[-i2rrK(o +). r] 

× [1 + ~(+) exp(@) exp(-i2n'h • r)] 

+ D~o -) exp[-i2n'K(o -)- r] 

× [1 + s e(-) exp(@) exp(-i2rrh • r)] 

f o r z >  t: 

D(a)(r) = D(o b) exp[-i2zrK~ +~. r] 

x [1 + ~(+) exp(-i2n'h • r)]. 
(9) 

The continuity of the tangential component of the wave 
vectors along the surface ( z -  0) and the boundary 
( z -  t) is fulfilled with the definition of K(o +) and K(o -). 
Thus further boundary conditions concern the continuity 
of the electric displacements: 

a t z =  0: 

o(a) 0 

D(,,) 

a t z =  t: 

D(h) 0 

D~)~ (+) 

= Dto +) + Dto -) 

= exp(@)[Dto+)~ (+) + D(o-),~ (-)] 

= D (+) + D (-) exp[-i27rt(K(o - ) -  K(o+)) • nl 

= exp(i~o){D(+)~ (+) + D(o-)~ (-) 

x exp[-i2yrt(K ( - ) -  K(+)) • n]}. 
(10) 

From the above equations (10), one obtains 

(+) "--(a) D o / tJ  o = 1/{1 + C e x p [ i 2 r c ( t / A ) e ( q  2 -  1)1/2]} 

D(o) /D(o  ) = {C  e x p [ i 2 7 r ( t / A  )e (q  2 - 1)1/2]} 

x {1 + C e x p [ i 2 7 r ( t / A ) e ( q  2 - 1)1/2]} -1 

D(~)/D(,~ ) = (1 + C)/{1 + C e x p [ i 2 7 r ( t / A ) e ( O  2 - 1)1/2]}, 

(11) 
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where the coefficient C is 

C = -[1 - exp(iqg)]/{1 - exp(iqg)[r/- E ( ? ]  2 - -  1)1/212}. 

(12) 

4. Analysis and discussion 

We will now study the excitation of the backward 
wavefield in the upper thin part of the crystal and analyse 
the consequences in the X-ray propagation. We will first 
treat the non-absorbing case which can be analytically 
detailed. Then the difference between the absorbing and 
non-absorbing cases will be pointed out. 

4.1. Backward wavefield in the thin part of  the crystal 

Let us first define a parameter which characterizes the 
excitation of the backward wavefield as a function of the 
phase shift ~0. One significant parameter is the ratio 
between the D O amplitudes of the backward and forward 
wavefields at the boundary (z = t). It can be easily shown 
that the coefficient C defined in equation (12) corre- 
sponds to this parameter: 

{D~o -) exp[-i2ntK~o -) .  n]}/{D~o +) exp[-i2ntK(o +). n]} 
= C .  

4.1.1. Non-absorbing case. For the Bragg total 
reflection range (lol _< 1), it is deduced from (8) that 

[Y] - -  E ( ? ~  2 - -  1) 1/2] = [r/-- i(1 -- r/Z) 1/2] = exp(--iqJ). 

Thus, the expression (12) for C for 1/71 ~ 1 is simplified 
as; 

C =exp(iqOsin(qff2)/sin(qJ-~o/2). (13) 

The parameter C becomes infinite for qJ = ~0/2, i.e. 
r /=  cos0p/2). Since C is the ratio between the D O 
amplitudes of the backward and forward wavefields at 
z = t, only the backward wavefield is excited in the thin 
part of the crystal. This effect can be geometrically 
explained (Fig. 2). There is a full transfer between the 
forward wavefield in the bulk and the backward one in 
the thin part, when they are exactly in phase, i.e. the 
antinodes of their standing waves are at the same position 
(modulus the reflecting plane spacing). This gives rise to 
an anomalous transmission of the X-rays as will be 
discussed in the next section. The transfer is minimal for 
qJ--q912 + rcl2, i.e. r /=  q: sin(~0/2). The antinodes of 
the standing waves, associated with the backward 
wavefield in the thin part and with the forward wavefield 
in the bulk, are located at a distance of one half of the 
reflecting plane spacing. Thus, the excitation of the 
backward wavefield is minimized [ICI = I sin(qff2)l]. 
There is no condition for the complete extinction of the 
backward wavefield. 

4.1.2. Absorbing case. The main difference is that C 
does not become infinite. There is no longer full transfer 
between the forward wavefield in the bulk and the 
backward one. An example for GaAs(001) with a 
boundary at a depth of 1000A is shown in Fig. 3. 
Values of lCI are drawn as a function of r/r for ~o = zr/4 
and 7r/2. ICI becomes maximum when r/r = cos(qff2). 
The maximum value beomes infinite for a non-absorbing 
crystal. 

Backward Bloch wave 

( ~  ~ _ _  Reflecting plane 

( )  ( _)~-_ Thin part 

v } Boundary 

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   u, pa. 

1 Forward Bloch wave in t h e l i ~  Reflecting plane 

Fig. 2. Full transfer between the forward wavefield in the bulk and the 
backward one in the thin part. The positions of the reflecting planes 
are symbolized by solid lines and the middle by dashed lines. The 
spacing between reflecting planes is expressed in terms of phase as 
27r. The full transfer occurs for ~o + 2 r r -  qJ = 2zr + qJ when the 
backward wavefield and the forward one in the bulk are in phase; i.e. 

the antinodes of their standing waves are at the same position 
(modulus the reflecting plane spacing). 

2 

ICl 

1 

o 

absorbing case I I 

q~ = n/2 

\ i  t 

-3 -2 -1 0 1 2 3 
r/r 

Fig. 3. Absolute ratio [CI of the D o amplitudes between the backward 
and forward wavefields at the crystal boundary. Curves are for 
GaAs(001) with a boundary at a depth t -- 1000 A, X = 1.6 A and 
004 reflection. Curves are drawn for ~0 -- rr/4 and rr/2. For the non- 
absorbing case, the shape of the curves depends on the ratio t / A  

only. 
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4.2. X-ray penetration into the crystal 

In the Bragg total reflection range, the amplitude of  the 
backward wavefield increases exponentially as a function 
of  the depth. For the non-absorbing case, the backward 
wavefield only is excited when 0 = cos0p/2). In the last 
case, the intensity of  the X-rays increases from the 
surface up to z = t and decreases in the bulk. It may seem 
surprising that the intensity of  the X-rays becomes firstly 
larger than the intensity of  the incident beam. In fact, 
only the intensity of  the non-propagating X-ray field 
becomes larger than the incident one and not the 
propagated energy, as the energy does not propagate 
into the crystal during the total reflection. Let us calculate 
the intensities of  the X-rays, normalized with respect to 
the one of  the incident wave, along the incident direction 
K o into the crystal: 

for0 < z < t :  

I (t) - - ] [ D  o(+)/D o(')] exp[-i2zrK(o +) • r] 

(-) (a) exp[_i2n.K(o-) + [Do  /Do ] .r]l 2 

= lexp[-i2rrK~o +) • r]l 2 

x (1 + Cexp{i2rc[( t -  z)/A]e(O 2 - 1)1/2}) 

x {1 + Cexp[i2rc(t/A)e(O 2 -  1)1/2]} -1 2 

f o r z >  t: 

i(b) = ][Do(~)/D o(a)] exp[_i2zrK(o+) . r]12 

= ]exp[-i2zrK (+). r]12 

× 1(1 + C)/{1 + Cexp[i2zr(t/A)e(q 2 - 1)1/2]}[ 2. 

(14) 

The first term in the above expressions, 
]exp[-i2nK~o +)- r][ 2, is equal to the usual anomalous 
absorption in a thick crystal. The second term which 
appears because of  the existence of  the backward 
wavefield will be called the transmission term. 

4.2.1. Non-absorbing case. Within the total reflection 
range, the usual anomalous absorption is given by 
]exp[-i2zrK~ +). r]] 2 = exp[-2rr (z /A)(1  - 02)1/2]. For a 
given value of  qg, one may consider the two extreme cases 
where the excitation of  the backward wavefield is either 
max imum or minimum. At the maximal  excitation 
[0 = cos(~0/2)], I CI tends to infinity and the intensity 
varies as 

Io(t) --- 

m 

Io b) : 

exp[-2rr (z /A)(1  - 02) I/2] 

x exp[+47r(z/A)(1 - 0 2 )  1/2] 

exp[+27r(z/A)(1 - 02) 1/2] 

exp[-2rr (z /A)(1  - 02) I/2] 

x exp[+47r(t/A)(1 - 02) I/2] 

exp{-27r[(z - 2t)/A](1 - 02)1/2}. 

As expected, the intensity exponentially increases until 
z = t and then decreases in the bulk (Fig. 4). At the 
minimal  excitation, similar considerations from equa- 
tions (14) indicate that the intensity varies as for a single 
perfect crystal, with a slightly stronger attenuation (Fig. 
4). For a given ~0, the intensity variation for other values 
of  0 are between the two extreme cases (Fig. 4). 

4.2.2. Absorbing case. Within the total reflection 
range, the above considerations also apply. Indeed the 
penetration depth for either the evanescent wave or the 
exponential wave depends on the extinction distance A 
which remains the same in the two cases. 

4.3. X-ray standing waves at the boundary o f  the crystal 

In the case of  a single perfect crystal, the intensity of  
the X-ray standing waves on the surface is given by 

]D(r)12p.c. = [D~oa)]2] 1 + ~(+)exp(-iZTrh. r)[ 2, (15) 

where 'p.c.' means the perfect crystal. When one 
considers the intensity of  the X-ray standing waves at 

(a) 2 the boundary of  the crystal, IDo I in the above 
expression should be replaced by the intensity of  the 
incident beam at the boundary. As a result, (15) has to be 
multiplied by the normalized intensity at the boundary 
l(Jl(z = t) = I(b)(z = t) given by (14). As indicated in the 
previous section, this factor is made of  two terms: (a) the 
correction due to the anomalous absorption which exists 
even in the case of  a perfect crystal (¢p = 0); (b) the 
correction for the transmission of  the X-rays through the 
thin part T(0). From (5), it can be seen that the 
anomalous-absorption term is 

]exp[-i27rtK~ +). n]l 2 = exp(- t /Zo)  (16) 

1.0 
. - -  

" -  0 . 9  

0 Z 0.8 

1 . 1  : 

0 . 7  . . . .  

0 

¢ = x/2 

~ -  7 - .  - .  [ "~-~ .  / - .  - .  

~ " " ' .  Inl = 1 / ~  

single perfect crystal " ~ - 1  
crystal containing a buried layer 

. _ ~ _  . . . . . . . . . . .  

I 2 z/t 

Fig. 4. Normalized intensity Io of the X-rays into the crystal. Curves are 
for the non-absorbing case of GaAs(001) with a boundary at a depth 
t = 1000/~, ~0 = rr/2, X = 1.6 A and 004 reflection. Curves for a 
single perfect crystal are drawn for comparison. The exponential 
behaviour as a function of the depth is not easily visible for this range 
of thicknesses. 
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with z o the usual penetration depth: 

(1 /z  o) = 2zrIm{-(kXo/}/o)  + ( l /A) [0  + e(0 2 - 1)1/2]}.  

The transmission term is given by 

T(0) = I(1 + C)/{1 + Cexp[i27r(t/A)e(O 2 - 1)1/2112. 

(17) 

The intensity of the X-ray standing waves at the 
boundary is thus determined by 

[D(r)[2 = T(o)exp(-t/zo)lD(r)12p.c.. (18) 

The variation of T(0) is illustrated in Fig. 5 for different 
values of q9 and the anomalous-absorption term is also 
drawn for comparison. As indicated in the previous 
section, for a given value of ¢p, the transmission is 
maximum at Or = COS(~0/2). For this value, the transmis- 
sion is about exp(2t/Zo), so that the total correction is 
exp(t/Zo). Depending on the value of ~0, the transmission 
term is roughly of the same order as the anomalous 
absorption one, with a maximal effect for ¢p = Jr. 
However, the variation of the two correction terms as a 
function of 0 is different. Thus they must be taken into 
account together for the XSW analysis when t is not 
small in comparison with the extinction distance A. 

Let us establish a qualitative criterion concerning this 
last point. With regard to the high precision of the XSW 
measurements, one can roughly estimate that the 
transmission and the anomalous absorption are not 
negligible when 2zrt /A > 0.05. For instance, for 
2rrt /A = 0.05, the maximal correction in the XSW 

T(V) 

1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

~ ( p  = rC 

~0= ~/~ 

z 
\ / / 

---.... 
Anomalous absorption 

0.7 ' ' ' ' ' ' ' ' ' 
-3 -2 -1 0 1 2 3 

r/r 

Fig. 5. Transmission T(O) of  the X-rays through the thin part o f  the 
crystal for ~o = rr/4, rr /2 and rr. Curves are for the absorbing case o f  
GaAs(001) with a boundary at a depth t = 1000 A, z = 1.6/~ and 
004 reflection. The anomalous-absorption term is drawn for 
comparison. 

Table 1. Comparison o f  the thicknesses t (-- O.05A/2rc) 
(`4) between Si, Ge, GaAs and CdTe for  004, 022 and I 11 

reflections at ~. = 1.6,4 

Reflection Si Ge GaAs CdTe 

004 894 366 392 271 
022 531 220 228 168 
111 375 165 166 126 

intensity at the buried layer depth is 0.95 for the 
anomalous absorption and 1.10 for the transmission term 
when ~0 = rr. Table 1 lists such minimal thicknesses 
t = 0.05A/2rr for Si, Ge, GaAs and CdTe crystals. It 
appears that the corrections should be added for t larger 
than several hundred A. The thickness t should be 
understood as the effective thickness which is larger than 
the nominal one for inclined Bragg reflections in XSW 
experiences (Golovchenko, Patel, Kaplan, Cowan & 
Bedzyk, 1982; Taccoen, Malgrange, Zheng, Boulliard 
& Capelle, 1994). For an inclined symmetric reflection, 
for instance, the effective thickness is increased from the 
nominal one by the factor 1 / cos ( -n ,  h) with ( - n ,  h) the 
angle between the crystal surface normal vector - n  and 
the reflecting vector h. 

4.4. X-ray waves on the surface o f  the crystal and 
reflectivity 

Besides a strong dynamical effect within the Bragg 
reflection range, the excitation of the backward wavefield 
is also responsible for the appearance of long-period 
weak oscillations far from the Bragg reflection. From 
(10), the amplitude ratio ~") (=  D(a)/D~ )) in  vacuum is 
obtained: 

~(a) = ~ ( + ) e x p ( i ~ 0 ) {  1 + [0 - • (0  2 - -  1)1/2] 2 

x C exp[i2rc(t/A)e(O 2 - 1)1/2]} 

x {1 + Cexp[i2rf f t /A)e(O 2 - 1)1/2]} -1. (19) 

The reftectivity R is related to the absolute value of ~ ) .  
Let us call Rp.c. the reflectivity in the case of a single 
perfect crystal and Rosc the oscillating part for the 
reflectivity. The total reflectivity R is 

R -- RoscRp.c. (20) 

with 

Rp.¢. = lyh/Yoll~t+)l 2 and Ros c = I~")/~t+)12. 

4.4.1. Non-absorbing case. When 101 >> 1, 
[0 - e(02 - 1) 1/2] "~" 20 and C ~, - i e x p ( - i q f f 2 )  x 
sin(~0/2)/(202), ~(a) can be approximated by 

~d,~) ~ ~+) exp(irp){ 1 + 2 sin(cp/2) 

x exp[ - i2z ro t /A  - i~o/2 - irr/2]} (21) 
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and then 

Rosc ~- 1 + 4 sin2(qg/2) - 4 sin(qg/2) sin(2zr0t/A + ~p/2). 

(22) 

From the above expression, it is possible to study the 
main features of the oscillation, i.e. period, position and 
amplitude. The oscillation period At/ is approximately 
equal to A/ t .  It is about 49 in the case of GaAs(001) with 
a boundary at a depth t = 1000 A (Fig. 6). It means that 
the period is about 25 times larger than the Bragg 
reflection range A t / =  2. The oscillation exhibits a 
regular sinusoidal shape. Since Rp.c. decreases as 
1/(402) far from the Bragg reflection, the oscillation 
amplitude decreases as Isin(~0/2)l/r/2. Maximum and 
minimum correspond to 27rot/A + q9/2 = +n /2 .  Thus 
their positions directly provide the value of tp. Modifica- 
tions for the absorbing case are negligible far from the 
Bragg reflection. 

Another interesting feature concerns the XSW above 
the crystal surface. The position of the XSW antinodes is 
determined by the phase of s e'). If one writes 
se('~) = I~)lexp[iqJ~")]exp(iqg), the position of the anti- 
nodes in vacuum is defined with respect to the reflecting 
planes in the thin part. qJ') = 0 means that the antinodes 
are located at distances that are a multiple of the 
reflecting plane spacing. We will call this position the 
reflecting plane position, q P ) =  n means that the 
antinodes are shifted by one half of the reflecting plane 
spacing from the previous position. We will call this 
position the middle position. Far from the Bragg 
reflection, it can be seen from (21) that 

q/") ~ qJ + phase of [1 + 2 sin(qg/2) 

x exp( - i2n~l t /A  - i~o/2 - in~2)]. 

~P is the phase for a single perfect crystal and the second 
term corresponds to the correction for the oscillating 
part. qo = zr for r/ < - 1 ,  decreases to 0 through the 
Bragg reflection and remains equal to 0 for r />  1. For 
q~'), one can distinguish two different behaviours. 
If ~0 < n/3  (or ~0 > 2n" - n/3) ,  qP) oscillates around 7r 
when r /< -1  and around 0 when 77 > 1. The amplitude of 
the oscillation is arcsin[2 sin(~o/2)] and the period is A / t  
(Fig. 7). This means that the antinode positions move 
around the middle position for small angles, go to the 
reflecting plane position through the Bragg reflection and 
then move around the reflecting plane position for large 
angles. For 7r/3 < q9 < 27r -- rr/3, tp~,~) decreases from 2rr 
to 0 with period A / t  (Fig. 7). This means that the 
antinodes continuously move into the crystal. 

4.5. Relationship between XSW and reflectivity measure- 
ments on the thin buried layer 

The XSW analysis of atoms in a thin buried layer can 
be carried out as usual, with appropriate corrections: (a) 
the transmission term T(r/) and the anomalous-absorption 
term exp(- t /Zo)  in the intensity of the X-ray standing 
waves; (b) the oscillating part Rosc in the rocking curve. 
The fluorescence yield Y(O) is thus 

Y cx T(O) exp(- t /Zo)  

x [1 + Is~(+)l 2 + 2F[~+) I cos(qJ - 2n'P)], 

where the coherent fraction F and the coherent position P 
are linked to the distribution of fluorescent atoms p(r) by 

F exp(i2nP) = f p(r) exp(i2:rrh • r) d3r 
f p(r) d3r 
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Fig. 6. Reflectivity profiles for ~0 = 7r/4, n / 2  and Jr. Curves  in the case 
o f  GaAs(001)  with a boundary  at a depth t = 1000 A, ~, = 1.6 A and 
004 reflection. The absorbing and non-absorbing cases are not 
distinguishable. The oscillation period is about A / t  whatever  the 
value o f  ~0. The reflectivity is arbitrarily drawn on a logarithmic scale. 
The curves are vertically shifted for visibility. 
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Fig. 7. Phase o f  the reflected wave in vacuum for ~o = n/4,  n / 2  and 0 
(single perfect crystal). Curves  are for the case o f  GaAs(001)  with a 
boundary  at a depth t = 1000 A, )~ = 1.6 A and 004 reflection. 
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One may retrieve information about the position of the 
atoms from the coherent fraction F and the coherent 
position P. Information about the displacement induced 
by the buried layer is obtained by the analysis of the 
reflectivity profile. These parameters are connected and 
provide complementary information. Let us consider for 
instance the simplest case of a single buried layer of 
atoms with similar upper and lower interfaces. The 
displacement is simply twice the coherent position P: 
q9--2rr(2P)modulus 2rr (Fig. 8a). This relationship is 
quite general for a symmetric buried layer, i.e. with 
similar upper and lower interfaces. 

In this case, the coherent position P is linked to the 
position of the middle of the buried layer H/2: 

Fexp(i2rcP) f p(r)exp[i2rr(h . r -  n /2 ) ]d3r  
= f p(r) d3r 

× exp(i2rcH/2). 

Since the buried layer considered is symmetric, the ratio 
in the above expression is real. Depending on the sign of 
the ratio, P is 

2rcP = 2rcH/2 or 2rcH/2 + 7r (modulus 2zr). 

The total displacement induced by the buried layer is H: 

q9 = 2rrH - 2:r(2P)(modulus 270. 

Thus, ~0 = 2zr(2P)(modulus 2rr) is a criterion of a 
symmetric buried layer. In practice, atom interdiffusion 
and surface roughening occur at the interfaces. Thus the 
buried layer may not be symmetric as schematically 
drawn in Fig. 8(b). This seems to actually happen for real 
heterostructures studied (Giannini et al., 1993; Takahasi 
et al., 1995; Boulliard et al., 1997). The relationship 
between ~0 and P becomes different from the previous one 
and the analysis of ~0 and P allows one to extract the 
strain parameters of the buried layer. 

Reflecting plane 

Thin part 

• Fluorescent atoms I T 2 o • 0 0 • 0 0 Non.fluorescent atoms 
• • • O 0  0 0 0 0  

nP • • • • O 0  Z2~P 

nI 
Bulk part 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Reflecting plane 

(a) (b) 
Fig. 8. Relationship between the phase q9 and the coherent position P. 

(a) Single and symmetric buffed layer: ~0 --- 2rr(2P)modulus 2rr. (b) 
Asymmetric buffed layer: ~0 :~ 2:r(2P)modulus 2re. 

5. C o n c l u s i o n s  

The main characteristic in a crystal containing a thin 
buried layer is the strong excitation of the backward 
wavefield in the upper thin part. In the non-absorbing 
case, the backward wavefield only may be excited for a 
particular value of r/. The strong excitation of the 
backward wavefield induces an anomalous transmission 
of the X-rays into the crystal. This phenomenon must be 
taken into account for the XSW analysis. 

It is also shown that, in the case of a symmetric buried 
layer, the same information on the displacement induced 
by the buried layer is obtained by the XSW and 
reflectivity measurements. For an asymmetric buried 
layer, complementary information is provided by the 
XSW and reflectivity measurements. This allows an 
analysis of the strain status in a thin buried layer. Indeed, 
the problem of the strain in ultrathin layers is not 
resolved. Generally, the macroscopic elastic model is 
extended to the case of monolayers. With the XSW and 
reflectivity measurements, the atom displacements can be 
determined in the case of monolayers and a more realistic 
strain model may be considered. 

The authors would like to thank Professor Y. Epelboin 
for kindly providing a careful reading of the paper. 
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